Compressed Sensing with Nonlinear Observations
نویسندگان
چکیده
Compressed sensing is a recently developed signal acquisition technique. In contrast to traditional sampling methods, significantly fewer samples are required whenever the signals admit a sparse representation. Crucially, sampling methods can be constructed that allow the reconstruction of sparse signals from a small number of measurements using efficient algorithms. We have recently generalised these ideas in two important ways. We have developed methods and theoretical results that allow much more general constraints to be imposed on the signal and we have also extended the approach to more general Hilbert spaces. In this paper we introduce a further generalisation to compressed sensing and allow for non-linear sampling methods. This is achieved by using a recently introduced generalisation of the Restricted Isometry Property (or the bi-Lipschitz condition) traditionally imposed on the compressed sensing system. We show that, if this more general condition holds for the nonlinear sampling system, then we can reconstruct signals from non-linear compressive measurements.
منابع مشابه
A Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملUnmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملNorm minimized Scattering Data from Intensity Spectra
We apply the ℓ 1 minimizing technique of compressive sensing (CS) to non-linear quadratic observations. For the example of coherent X-ray scattering we provide the formulae for a Kalman filter approach to quadratic CS and show how to reconstruct the scattering data from their spatial intensity distribution.
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملFrames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010